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Abstract. In medical image based intelligent diagnosis, class imbalance issue often appears
due to the substantially smaller available training data for rare diseases compared to common
diseases. Here we propose a novel learning framework to effectively solve this issue, adding
an auxiliary decoder and reusing the original CNN classifier to help the classifier more likely
extract disease-relevant features for both rare and common diseases. Experiments on two skin
disease datasets supports that the proposed framework outperforms strong baselines and can
be flexibly combined different model structures and existing training strategies.

1. Introduction
Nowadays, significant progress has been achieved in deep learning and relevant techniques have
been applied in many medical diagnosis systems [4, 7, 9, 13, 14]. However, accurate diagnosis
often relies on large amount of training data, while in many real applications, such as skin
disease diagnosis [2, 15], the collected data may be very limited especially for rare diseases.
The imbalanced training data between common and rare diseases could make deep learning
models largely ignore discriminative features of rare diseases during model training resulting
in biased predictions towards the common (large-sample) diseases. Since the class-imbalance
issue has been extensively investigated over the last few decades, some traditional but effective
methods have been adopted to deal with class imbalance in deep learning. One widely adopted
approach is to augment small classes by simply over-sampling the data from these classes [8].
Oversampling can be indirectly implemented by various transformations of original data, such
as flipping horizontally, and random rotation within certain range of degrees. Besides generating
more data, cost sensitive methods, such as class weighting [11] and focal loss [6], are also proved
to effective to alleviate the class-imbalance issue. The class-weighting method can help deep
models pay more attention to small-class data during training, and focal loss can help models
automatically select and focus on hard training data large of which are often from small classes
In addition, transfer learning via pretrained model can be also useful to alleviate the class-
imbalance issue [5]. While the traditional approaches have been widely adopted to handle
the class-imbalance issue in training deep learning models, deep learning technique itself has
seldomly been explored to help train models. One exception is the recent work which uses the



Grad-CAM attention map to help models focus on the lesion region in images of rare diseases
during model training, resulting in improved diagnosis performance on both common and rare
diseases [16]. Different from the attention method, in this paper, a simple but novel deep learning
based framework is proposed to alleviate the class-imbalance mainly with the help of a decoder
network. This is inspired by the idea that better image reconstruction from the higher layer of
the CNN classifier would help the classifier likely extract more visual content, especially when
the reconstruction faithfulness is enforced for images of rare diseases. Extensive experiments on
two skin image datasets proved the effectiveness of the proposed framework.

2. Method
The objective of interest is to effectively handle the class imbalance problem such that small
class(es) such as rare diseases can be well learned by the classifier. To help the classifier learn
small classes, larger weights are often assigned to smaller classes such that the importance of
each training data from small classes is emphasized and therefore can be correctly recognized
by the classifier. However, due to limited training data for each small class, the classifier might
be trained to overfit the data of small classes, i.e., learn to recognize each small class of data
not entirely by the class-specific characteristics but by certain superficial features. With this
consideration, it would be desirable if the feature vector for class prediction can contain more
information of the original data, such that the class-specific information can be more likely
encoded in the feature vector. Here we propose a simple way to achieve this goal, i.e., by adding
a subsidiary decoder and an auxiliary CNN classifier to the (original) CNN classifier (Figure 1).
Intuitively, if any input image can be well reconstructed from the feature output of the original
CNN classifier, such feature vector should contain all essential visual information of the input
image, including the discriminative information for accurate class prediction. Therefore, during
training the CNN classifier, a decoder can be attached to the end of the feature extractor part
of the original classifier to help the feature extractor output contain as much visual information
of the input as possible, where the feature extractor would also work as an encoder. On the
other hand, since the output of the decoder is often over-smoothed compared to the input image
(e.g., discarding detailed information like high-frequency edges and textures), the class-specific
information in the input image could be partly or mostly removed during the decoding process.
To help the output of the decoder contain the essential discriminative information for each input
image, we propose applying the original classifier again, as an auxiliary CNN classifier sharing
the mode parameters with the original CNN classifier, to the classification of the reconstructed
image from the decoder (‘twin classifier network’ in Figure 1). Overall, the twin CNN classifiers
and the decoder can be jointly trained by minimizing the loss L,

L = Lc + αLr + βLt , (1)

where Lc can be the general cross-entropy loss or its variants like class-weighted cross-entropy
for the original CNN classifier, Lt represents the same type of loss as that of the original CNN
classifier for the auxiliary CNN classifier, and Lr is the (L2 or L1) reconstruction loss for the
decoder. α and β are coefficients to balance the three loss terms. Lr can further decomposed to

Lr =

K!

k=0

ωkLk , (2)

where Lk is the reconstruction loss for the k-th class of training images, andK is the total number
of classes. ωk is the class weight, with higher value for smaller classes and thus emphasizing
that images from smaller classes should be reconstructed more faithfully. It is expected that the
class weight would further help the output of feature extractor in the model keep all important
(including the class-specific) information especially for small classes.



Figure 1. The proposed model framework. The green part represents the model structure, and
the blue part represents the loss terms for model training.

3. Experiments
3.1. Experimental settings
Dataset. Two medical image datasets were used to evaluate the proposed approach. The
first one is Skin-7 dataset provided by ISIC2018 Challenge with 7 disease catogories [1, 12], in
which 6705 images are for Melanocytic nevus and only 115 images for Dermatofibroma, clearly
having serious data imbalance between classes. The other is the Skin-198 dataset with 198
categories [10]. The smallest class contains only 10 samples and more than 70 classes contain
less than 20 samples. All images were resized to 300× 300 pixels and then randomly cropped to
224× 224 pixels. For each dataset, images are randomly split into five folds with stratification
for five-cross validation. Each time, we gather four folds as training set and the other one as
the test set.
Implementation and Protocol. In the experiments, each encoder backbone was pretrained
on ImageNet, while decoder was initialized by Kaiming Normal Initialization [3]. The decoder
consists of 2 blocks, and each block contains 1 deconvolutional layers. α and β in Equation(1)
were set to 10.0 and 0.2 respectively. SGD optimizer was used throughout, with initial learning
rate set as 0.001 and momentum set as 0.9. The learning rate was divided by 10 at the 100th
epoch. Each model was trained for up to 200 epochs, with the consistent observation of training
convergence within 160 epochs. Considering the imbalance distribution across classes, mean
class f1-score (MF1, i.e., average f1-score over all classes), Precision (i.e., average precision
over all classes) and Recall (i.e., average recall over all classes) at the last training epoch were
calculated on each validation set, and the mean and standard deviation of the measurements
over all the five cross-validation sets were reported.

3.2. Results
In order to test the effectiveness of the proposed approach, we compared our method to two
widely-used training strategies for handling data imbalance, namely, 1) cost sensitive learning
(i.e., class-weighted cross-entropy loss, denoted by WCE) [11], and 2) focal loss [6] denoted
by FL, a representative method of hard negative mining. The traditional cross-entropy loss
(BCE) and the class-weighted focal loss (WFL) were also used as baseline training strategies.



Table 1. Comparison between the proposed approach and baseline methods based on cross-
entropy loss on Skin-7 and Skin-198 datasets.

Approaches
Skin-7 Skin-198

MF1 Precision Recall MF1 Precision Recall

BCE
84.44 86.78 82.92 65.75 65.72 66.85
(0.55) (1.48) (1.35) (1.21) (1.20) (1.01)

WCE
84.53 86.12 83.52 65.45 65.45 66.31
(1.01) (1.24) (1.22) (1.46) (1.45) (1.50)

CD (ours)
85.93 88.58 83.92 67.69 67.67 68.62
(1.30) (1.37) (1.35) (1.56) (1.55) (1.54)

CDC (ours)
86.75 89.26 84.81 67.97 67.96 69.16
(0.82) (0.37) (0.98) (1.00) (1.01) (0.89)

Table 2. Comparison between the proposed approach and baseline methods based on focal loss
on Skin-7 and Skin-198 datasets.

Approaches
Skin-7 Skin-198

MF1 Precision Recall MF1 Precision Recall

FL
85.34 87.94 82.97 65.33 65.33 66.11
(0.62) (0.74) (0.89) (1.35) (1.33) (1.32)

WFL
86.48 89.37 84.22 65.46 65.41 66.37
(0.58) (0.36) (1.12) (1.97) (1.98) (1.93)

CD (ours)+FL
86.35 88.56 84.59 67.33 67.35 68.21
(0.95) (1.21) (0.88) (1.41) (1.41) (1.16)

CDC (ours)+FL
86.92 89.62 84.84 67.52 67.52 68.61
(1.08) (0.84) (1.70) (2.32) (2.36) (1.85)

For fair comparison with each baseline, the proposed model (denoted by CDC) was trained
by the same baseline training strategy each time. The performance of the ablation version
without the auxiliary CNN classifier (denoted by CD) was also reported. From Tables 1 and 2,
it can be observed that the proposed framework outperforms all the baselines on both Skin-7
and Skin-198 datasets. In particular, the improvement is also clear on the small-sample classes
(Table 3, average performance over the smallest classes on Skin-7 and the 40 smallest classes on
Skin-198) compared to the baselines BCE and WCE. Similar improvement was also observed
when compared to the FC and WFC baselines on the small-sample classes (not shown due to
limited space). Figure 2 demonstrates the performance of various approaches on one validation
set during the training process, confirming that the all trainings are converged and the proposed
framework consistently outperform the baselines. In addition, while all the reported results
were based on the ResNet50 backbone, similar performance was also observed when using the
VGG and DenseNet backbones, supporting that the proposed framework is generalizable and
not limited to specific CNN backbone.

4. Conclusion
In conclusion, this paper proposed a novel and effective way to help handle the class-imbalance
issue, mainly by using a subsidiary decoder to help the CNN classifier more likely extract disease-



Table 3. Performance of methods based on cross-entropy loss on small-samples classes of Skin-7
and Skin-198 datasets.

Approaches
Skin-7 Skin-198

MF1 Precision Recall MF1 Precision Recall

BCE
75.13 83.26 69.22 64.16 65.63 68.58
(6.90) (5.50) (11.24) (2.59) (4.36) (3.84)

WCE
75.40 83.09 70.58 65.78 69.13 69.87
(8.12) (5.09) (10.95) (3.26) (4.62) (4.76)

CD (ours)
78.02 88.20 70.61 69.32 71.53 73.37
(6.46) (5.84) (9.89) (4.66) (6.03) (6.56)

CDC (ours)
80.28 90.25 72.78 69.05 75.09 75.33
(7.64) (3.99) (10.06) (4.71) (3.94) (4.94)

Figure 2. MF1 curves of different methods over the smallest classes on one Skin-7 validation
set with respect to training epochs. The training was converged around 160 epochs and the
performance of the proposed framework is consistently better than corresponding baselines.

relevant visual features. Experiments on two skin image datasets showed that the proposed
learning framework can improve not only the overall average classification performance over all
diseases, but more importantly on the small-class (often corresponding to rare) diseases. The
proposed framework is independent of existing training strategies and model backbones, and
therefore can be easily combined with existing strategies and various CNN models.
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